首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19037篇
  免费   2024篇
  国内免费   1324篇
电工技术   204篇
技术理论   1篇
综合类   930篇
化学工业   11164篇
金属工艺   735篇
机械仪表   171篇
建筑科学   245篇
矿业工程   239篇
能源动力   646篇
轻工业   566篇
水利工程   76篇
石油天然气   3526篇
武器工业   1127篇
无线电   360篇
一般工业技术   1370篇
冶金工业   534篇
原子能技术   166篇
自动化技术   325篇
  2024年   22篇
  2023年   266篇
  2022年   361篇
  2021年   517篇
  2020年   566篇
  2019年   592篇
  2018年   526篇
  2017年   515篇
  2016年   650篇
  2015年   760篇
  2014年   1242篇
  2013年   1187篇
  2012年   1459篇
  2011年   1541篇
  2010年   1275篇
  2009年   1266篇
  2008年   1078篇
  2007年   1306篇
  2006年   1194篇
  2005年   1028篇
  2004年   911篇
  2003年   865篇
  2002年   597篇
  2001年   533篇
  2000年   448篇
  1999年   337篇
  1998年   271篇
  1997年   218篇
  1996年   201篇
  1995年   126篇
  1994年   87篇
  1993年   86篇
  1992年   112篇
  1991年   57篇
  1990年   45篇
  1989年   37篇
  1988年   13篇
  1987年   19篇
  1986年   12篇
  1985年   12篇
  1984年   13篇
  1983年   9篇
  1982年   7篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1960年   1篇
  1959年   1篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
Ceria (CeO2) particles are prevalent polishing abrasive materials. Trivalent lanthanide ions are the popular category of dopants for enriched surface defects and thus improved physicochemical properties, since they are highly compatible with CeO2 lattices. Herein, a series of dendritic-like mesoporous silica (D-mSiO2)-supported samarium (Sm)-doped CeO2 nanocrystals were synthesized via a facile chemical precipitation method. The relation of the structural characteristics and chemical mechanical polishing (CMP) performances were investigated to explore the effect of Sm-doping amounts on the D-mSiO2/SmxCe1?xO2?δ (x = 0–1) composite abrasives. The involved low-modulus D-mSiO2 cores aimed to eliminate surface scratch and damage, resulting from the optimized contact behavior between abrasives and surfaces. The trivalent cerium (Ce3+) and oxygen vacancy (VO) at CeO2 surfaces were expected to be reactive sites for the material removal process over SiO2 films. The optimal oxide-CMP performances in terms of removal efficiency and surface quality were achieved by the 40% Sm-doped composite abrasives. It might be attributed to the high Ce3+ and VO concentrations and the enhancement of tribochemical reactivity between CeO2SiO2 interfaces. Furthermore, the relationship between the surface chemistry, polishing performance as well as the actual role in oxide-CMP of the D-mSiO2/SmxCe1?xO2?δ abrasives were also discussed.  相似文献   
2.
This paper was intended to delineate numerical research for hydrogen catalytic combustion over a circular cylinder. The wire/rod-type catalytic reactor is a simple geometry reactor with an economical design with less pressure loss. For the single rod in the reaction channel, the flow characteristic and the difference of conversion efficiency between non-gas-phase reaction and gas-phase reaction have been delineated in the present study. The flow field and the chemical reactions were numerically modeled using 2D Large Eddy Simulation combined with the gas-phase and surface reaction mechanisms. The results show that the current numerical simulation has been validated to precisely predict the vortex shedding and its frequency in the cold flows. Despite the variation trends being dominated by the upstream flow, the vortex shedding phenomena were affected by the flue gas generated from the rod surface. It can be seen from the linear relationship between the vortex shedding frequency of reacting flow and Reynolds Number. It is noted that the vortex shedding vanished if the gas-phase reaction was ignited in the reaction channel. In addition, the geometric modified conversion efficiency was proposed to delineate an indicator that could be potential for the optimization of rod-type catalytic reactor. In summary, the fundamental study of a rod in a 2D flow channel can provide information for optimizing the catalytic design or the rod array arrangement in the reactor. Moreover, the rod can also be a partial catalytic flame holder to ignite and stabilize the gas-phase reaction. The obtained results could be the potential for practical applications of rod-type catalytic combustion, catalytic gas turbine, hydrogen generation, partially catalytic reaction flame holder, and other catalytic reactions that can be appreciated.  相似文献   
3.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
4.
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.  相似文献   
5.
The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.  相似文献   
6.
7.
The European Federation for Medicinal Chemistry (EFMC) created the Young Scientists Network (YSN) to support early-career medicinal chemists and chemical biologists. By doing this, it addressed the rapid changes taking place in the scientific community and in our society, such as the rise of social media, the evolution of the gender balance in the scientific population, and educational needs. Creating the YSN was also a way to ensure that the next generation of scientists would contribute to shaping EFMC's strategy, while recognizing and addressing their needs. The YSN was set up as a very dynamic concept, and has now developed to the point where its impact is evident. The activities it promotes complement EFMC's community support and scientific opportunities, rejuvenating the Federation and preparing it for the future. It also provides opportunities for many brilliant young scientists, who do not hesitate to invest time and energy in supporting our community and shaping their own future.  相似文献   
8.
Pillar[n]arenes are new generation of supramolecular macrocyclic host, which exhibit excellent host−guest recognition properties. In the last decade, functional materials constructed from pillar[n]arenes have been attracted more and more attention and displayed outstanding characteristics, such as stimuli-responsiveness, self-healing and adaptability. In this mini-review, we provide a survey of the pillar[n]arene-based literatures covering light-harvesting systems, functional hydrogels, and solid materials. It is anticipated that more and more pillar[n]arenes-based advanced materials with multi-functional properties will appear in the near future.  相似文献   
9.
10.
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号